Int. J. Heat Mass Transfer.

Vol. 14, pp. 601-617. Pergamon Press 1971.

Printed in Great Britain

HEAT TRANSFER AND FRICTION IN TUBES
WITH REPEATED-RIB ROUGHNESS

R. L. WEBB
The Trane Company, La Crosse, Wisconsin, U.S.A.

E. R. G. ECKERT and R. J. GOLDSTEIN
University of Minnesota, Minneapolis, Minnesota, U.S.A.

(Received 12 March 1970 and in revised form 28 July 1970)

Abstract—Heat transfer and friction correlations are developed for turbulent flow in tubes having a
repeated-rib roughness. The friction correlation is based on law of the wall similarity and is the same
method employed by Nikuradse for sand-grain roughness. The heat transfer correlation is based on
application of a heat-momentum transfer analogy to flow over a rough surface, which was first used by
Dipprey and Sabersky for sand-grain roughness. The correlations are verified with experimental data
taken with 001 < e/D < 0-04 and 10 < p/e < 40 and covering the range 0-71 < Pr < 37-6. The
correlations may be extended to a wider range of /D by virtue of the law of the wall. The good results
obtained in this study, supported by the prior work with sand-grain roughness, offer strong argument
for application of the correlating methods to other roughness geometries. The success of the heat-
momentum analogy correlation is compared with other methods frequently found in the literature.
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NOMENCLATURE

pipe inside diameter (to base of ribs);
equivalent diameter D, = D — e;
defined by Hall [12] ;

height of roughness element ;
equivalent sand-grain roughness,

In (e, /7€) = (848 — u}f)2'5;

et = eu*/v = (e/D)Re\/f12;

€gy = e U*/v;

friction factor, f = (AP/L) D/2u?;
Prandtl number function, cf. equations
(14) and (18a);

g = (25t — DAJ(1) + u} ;

g=gPr "(n=057 for repeated-
ribs);

distance between repeated-ribs;
Prandtl number, evaluated at T, ;
effective Prandtl number, Pr, = v,/a, ;
heat flux;

pipe radius;

Reynolds number Re = Du,,/v;
Stanton number;

mixed mean fluid temperature ;
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dimensionless temperature,

T* = T(q,/pcu®);

local fluid velocity ;

velocity at pipe centerline;

average fluid velocity ;

dimensionless velocity, u* = u/u*;
ul = J(2/) + 2:5In(2¢/D) + 375
iy =.J(2/f) + 2'5In (2e5,/D) + 375;
“friction velocity,” u* = \/(10/p);
coordinate distance normal to wall ;
thickness of viscous influenced region ;
dimensionless distance, y* = yu*/v;
distance from wall at which u = u,,

Greek symbols

thermal diffusivity, « = k/pc;
effective diffusivity, o, = a + g,;
eddy diffusivity of heat;

eddy diffusivity of momentum ;
efficiency index, n = (St/St,)/(f/f.);
general functional specification ;
kinematic viscosity ;
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v, effective kinematic viscosity,
V,EV A+ g,
T, local time average shear stress;
Tos apparent wall shear stress,
1, & — (D/4dP/AX;
Tops wall shear stress.
Subscripts
m, evaluatedaty = y,.;

s, smooth tube;
W, evaluated at wall.
Unsubscripted f, St, F(Pr) refer to rough tube.

INTRODUCTION

Twis study seeks to develop a generalized under-
standing of the Stanton number and friction
characteristics of “‘repeated-rib” roughness in
turbulent pipe flow. The roughness geometry is
shown in Fig. 1 and is described by the

p/e  Relative rib spacing
F16. 1. Characteristic dimensions of repeated-rib roughness.

dimensionless parameters e/D and p/e, assuming
that the rib thickness is small, relative to the rib
spacing. This understanding will permit pre-

Table 1. Data for repeated-rib roughness in circular tubes (T-transverse ribs; H-rib in helical form)
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diction of the friction factor as a function of the
variables ¢/D, p/e and Re. The Stanton number
is described as a function of the same variables,
plus the Prandtl number.

A number of heat-transfer measurements have
been performed for repeated-rib roughness in
pipe flow, as shown in Table 1. This body of
work has not resulted in a rationally based
correlation for the St and f as a function of the
geometric variables (¢/D, p/e) and Prandt]
number. Most of the data were taken in the
fully rough region (where f'is independent of Re)
resulting in an incomplete understanding of the
heat transfer characteristics in the transition
region before the fully rough condition is
attained. In addition, most of the work was done
with air flow so the Prandtl number influence
is not well established. Those who have studied
the effect of Prandtl number in rough tubes
offer conflicting results. Gomelauri [9], who
worked with an annular flow, and Kalinan [7]
indicate that the Prandtl number dependency of
repeated-rib roughness and smooth tubes is
approximately equal. However, Kolar [10] and
Burck {11] used a screw-thread type roughness
(p/e = 2) in pipe flow and found that the heat
transfer augmentation, St/St, for a given rough-
ness, increases with increasing Prandtl number.

Considerable data exist for repeated-rib
roughness in an annular flow geometry in which
the inner annulus surface is rough and the outer
surface is smooth. The hydraulic diameter
reasonably correlates smooth annular flow
friction data with pipe data, but the concept does

Author Rib type

|
l
|
!

{1] Nunner

[2] Koch

[3] Gargaudet al.
[4] Molloy

[5] Sutherland et al.
[6] Brouilette et al.
[7] Kalinin et al.
[8] Sams

— This study

SEETmmee-

e/D pie Re x 1073
0-04-0-08 2-81-7 1-100 07
0-04-0-25 4-200 1-100 07
0-0004-0-016 1-1-15 200-3000 07
0014 10 2-70 07
0-0035 11-8 10400 10
0-005-0-10 5-14 30-150 water
0-015-0-:05 20-100 10-140 0750
0-008-0-02 10 5-300 07
6-100

001004 0-7-38
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not hold when only one surface of the annulus
is roughened. An equivalent diameter, D,, has
been proposed by Hall [12], who theorizes that
annulus data based on the derived e/D,, should
agree with the results obtained in pipe flow for
geometrically similar roughness if /D, = e/D.
Although the repeated-rib surface may be
considered as a “roughness” geometry, it may
also be viewed as a problem in boundary layer
separation and reattachment. Figure 2 shows+a

Ref | p/e Flow pattern
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FiG. 2. Flow patterns as a function of p;e.

catalog of flow patterns downstream from a rib,
as a function of the relative rib spacing (p/e).
Separation occurs at the rib, forming a widening
free shear layer which reattaches 6-8 rib
heights downstream from the separation point.
A reverse flow boundary layer originates at the
reattachment point and grows in thickness in the
upstream region. The boundary layer tends
toward redevelopment downstream from the
reattachment point. The wall shear stress is zero
at the reattachment point and increases from
zero in the reverse flow and reattachment
regions; however, the direction of the shear
stress is opposite in these regions. Reattachment
does not occur for p/e less than about eight.

Measurements of the local heat-transfer co-
efficient downstream from the rib [13, 14] show
that a. maximum heat-transfer coefficient occurs
in the vicinity of the reattachment point. The
local heat-transfer coefficients in the separated
flow region are larger than those of an un-
disturbed boundary layer, although this is not
true for laminar flow downstream from a rib.

Friction correlation

A friction correlation for flow over “‘sand-
grain” roughness was developed by Nikuradse
[19]. Based on law of the wall similarity,
Nikuradse found that his data, covering a wide
range of e/D, was correlated by the friction
similarity functiont

ul(e*) = J(2f) + 2:51n (2¢/D) + 375

where e* is the “'roughness Reynolds number”.
If law of the wall similarity is assumed applicable
to arbitrary types of roughness, the same para-
meters should correlate the friction data for any
geometrically similar roughness family.] A
generalized friction correlation for the repeated-
rib roughness, which accounts for both rough-
ness parameters (e/D and p/e), has not been
established.

Heat transfer correlation

Nunner [1] was the first to propose a flow
model. He proposed that the roughness acts
to reduce the thermal resistance of the turbulence
dominated wall region without significantly
affecting the viscous region. He likened this to
the temperature profile in smooth tube flow at
increased Prandtl number. The argument was
quantified by using the Prandtl analogy and
replacing Pr by (f/f)Pr. This model predicts
decreasing St/St, with increased Prandtl number,
contrary to the previously discussed results.

1 The function ut(e*) used here is equivalent to the
symbol B(e*) used by Nikuradse. In the “fully rough”
condition (e* > 70), B(e*) = 8-48.

t A family of repeated-rib roughness is defined as
geometrically similar if p/e = constant and the rib shape is
not varied.
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Further, it predicts that St/St, is independent of
the roughness type.

Assuming that law of the wall similarity
applies to the temperature profile as well as to
the velocity profile, Dipprey and Sabersky [20]
developed a heat-momentum transfer analogy
relation for flow in a sand-grain roughened
tube. They achieved excellent correlation of their
data using the correlation

(17281 — 1) J(£12) + 848 = gle*, Pr).

They assumed that their roughness closely
approximated that used by Nikuradse and
calculated e* in terms of the Nikuradse sand-
grain roughness, using u; = 8-48. The concept
proposed by Dipprey and Sabersky is so general
it may apply to any roughness for which law of
the wall similarity holds. Sheriffand Gumley [21]
applied the concept to their repeated-rib annulus
air flow data using a friction factor defined in
terms of D,, and likewise achieved good
correlation.

Sutherland [22] and Sheriff and Gumley [21]
have found that the empirical correlation St/St,
vs. et worked as well as the Dipprey and
Sabersky model for air flow over repeated-ribs
with p/e = 10.

Using data for several basic types of non-
geometrically similar roughnesses (repeated-rib,
sand-grain and screw-threads), Burck [11] con-
cluded that the heat-transfer data of all rough-
ness geometries may be correlated in the form
nless Pr), where e, is the equivalent Nikuradse
sand-grain roughness. Thus, Burck concludes
that all roughness types yield the same per-
formance (e.g. the same ) if evaluated at
equal egj,.

It should be noted that none of the correla-
tions can be reduced to yield equivalent algebraic
expressions.

ANALYSIS

The flow over a rough surface is not suf-
ficiently understood to permit heat transfer and
friction prediction by analytical methods nor is
there even general agreement on the parameters
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which should be used to correlate the data.
Law of the wall similarity is, however, a
reasonably well accepted concept, and a friction
correlation based on this concept seems
warranted. Due to the good results achieved by
Dipprey and Sabersky, the heat-momentum
transfer analogy, based on law of the wall
similarity, offers promise of application to other
types of geometrically similar roughnesses. These
concepts will be developed and applied to
correlation of the repeated-rib data.

The rough surface analysis employs essentially
the same concepts, which are commonly accepted
in analysis of flow over smooth surfaces, although
certain assumptions are different. Parallel
analyses will be shown for the rough and smooth
surface cases in order to show the similarities
and differences of the two cases. The rough
surface analysis is developed for an arbitrary
roughness geometry whose characteristic dimen-
sion is e/D. Subsequently, the results are extended
to include the p/e dimension.

Momentum transfer analysis

Measured velocity distributions show that the
effects of viscosity and surface roughness differ
in the inner and outer regions of the turbulent
boundary layer. In the outer region the velocity
defect, (u, — u)/u*, is insensitive to viscosity and
roughness. This “velocity defect law” is described
by equations (la) and (1b) in Table 2. In
contrast the velocity near the wall is sensitive,
both to viscosity and the type of roughness ; this
phenomenon is termed “law of the wall”
similarity and is described by equations (2a) and
(2b) of Table 2. Law of the wall similarity implies
that the wall region velocity distribution for
geometrically similar roughness depends only
on e* and is independent of the pipe Reynolds
number. Based on a detailed re-evaluation of
velocity distribution measurements in smooth
and rough pipes, Hinze [31] concludes that
these velocity distribution laws do not appear to
be strictly independent of pipe Reynolds number,
and so they should be regarded as good
approximations. Assuming a region of overlap
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(a region in which either law adequately predicts
the velocity in at least a small region Ay/R), the
law of the wall and the velocity defect law are
combined to give algebraic equations for the
turbulence dominated part of the wall region
[equations (3a) and (3b)]; the constants are
those proposed by Nikuradse [18]. The smooth
surface equation holds beyond y* =~ 26 from
the surface, and the rough surface equation is not
expected to hold for y < e. Equations (3a) and
(3b) are frequently assumed to hold up to the
pipe centerline, although this is an approxima-
tion. Assuming that equations (3a) and (3b) hold
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pipe flow following a somewhat different deriva-
tion than that used by Dipprey and Sabersky.
The development assumes that the heat and
momentum transport equations of fully develop-
ed flow can be approximately applied to the
flow in a rough pipe. The assumption should
be reasonable in the region y > e with small e/D.
In the region y < e, where radial velocities
exist, one may postulate that the concept
involves the equivalent fully developed transport
equations of the spatially averaged periodic flow.

With flow in a smooth tube, the only forces
in the axial direction are the static pressure

Table 2. Velocity distribution and friction expressions

Smooth tube

Rough tube

(u, — wyu* = ¢,(y/R) (1a)
uu* = §(yu*v) (2a)
wu* = 2:5In (yu*/v) + 55 (3a)
J@f) = 25In(Du*2vy + 175 (4a)

(u, — uyu* = ¢,(y/R)

uju* = ¢dslyje) + paleu*v)
uu* = 2:5In(yie) + uf(e®)
\/(Z/ﬂ = 25In(D/2e) + u}(e*) — 375 (4b)

(1b)
(2b)
(3b)

approximately over the entire cross-section, the
friction factor is given by the integrated velocity
distribution, equations (4a) and (4b). Equation
(4b) defines the friction similarity law for rough
surfaces; thus, u} vs. e should correlate all
friction data for any type of geometrically
similar roughnesses. According to equation (3b),
u? is the average dimensionless velocity at
y = e. In the fully rough condition u; attains a
constant value, which implies that the wall
region velocity distribution is not affected by
the fluid viscosity, and that any viscosity effects
are confined within y < e. Equation (3b) shows
that u should be independent of tube diameter
for geometrically similar roughness. Nikuradse
found this to be true for sand-grain roughness
in fixed diameter tubes whose e/D varied as
much as 16:1. It is reasonable to expect the
same result for the repeated-rib roughness,
although u) will be a function of p/e as well as
ofe”.

The heat-momentum transfer analogy is
developed for a turbulent, Newtonian fluid in

gradient and the fluid shear stress; as a conse-
quence, a linear shear stress distribution exists.
.1 dP _ T T

& ®-y rR O

Equation (5) is commonly applied to flow in
rough tubes by replacing the wall shear stress
(t,) by 1o, which arbitrarily assigns the effect of
all drag forces to the wall. Thus for the rough
surface,

TR (6)

Equation (6) should well approximate the
shear stress distribution for y > e but not in the
roughness region (y < ¢) where pressure forces
act on the roughness elements. Figure 3 illustrates
the radial distribution of the stream-wise
averaged shear stress using equation (6) only
for the region y > e. Figure 3 proposes that the
shear stress distribution in the region y < e is
significantly different from that which exists in
smooth tubes.
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With this introduction, the dimensionless
transport equations for fully developed, turbu-
lent flow are applied to both rough and smooth

- - Pipe ¢

equation (6) for y>e

6"\;‘

Tw

Fi1G. 3. Qualitative description of rough surface shear stress
distribution.

surfaces using the apparent wall shear stress (1)
defined by the static pressure gradient.

T v dut

W vayT "
q v, 1.dT”
q. v Pr.dy*’ ®)

The heat-momentum analogy
Substitution of equation (7) in equation (8)
and integration gives

10, dut
Pr
Edy+

T - T = dy*. 9

4%
9w T

oL.——,;

The assumptions employed in the integration
of equation (9) for rough and smooth surfaces
are shown in Table 3. The first assumption
specifies that molecular effects may be neglected
in the turbulence dominated region y > y,. The
effective Prandtl number is taken as unity in the
turbulence dominated region (second assump-
tion). Although this assumption may be debated,
Rotta [23] has shown that moderate variation
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of Pr, in the turbulence dominated region will
have little effect on the Stanton number. Equal
heat flux and shear stress distributions are
usually assumed (assumption three) for smooth
tube flow. The same assumption is applied to
the rough surface only for the region y > e. The
previous discussion of the rough surface shear
stress distribution argues against this assumption
for the region y < e. The fourth assumption is
that the temperature at y, (where u =u,)
should be approximately equal to the mixed
mean fluid temperature. The validity of this
assumption for smooth surfaces may be deter-
mined by comparing the von Kéirman and
Martinelli analogy formulations for smooth
tubes. For ¢, = ¢, both analyses use the same
velocity distribution; the von Karman analysis
utilizes the T, ~ T,, assumption, whereas the

Table 3. Assumptions used for integration of equation (9)

Assumption Smooth Rough
eV > 1, g > 1 Y>>0 Y>>
Pr,=1 V> V>V
qT _y y>0 y>e
dw T
I,~T. Y= Vm

Martinelli analysis does not. The predicted
results differ by about four per cent at Pr = 1
and have a negligible difference for Pr > 10.
Slightly larger errors may occur for rough tubes.

For convenience, the identities defined by
equation (10) and (11) will be used in the
integration of equation (9).

T} — TZ = J(f72)/St (10)
Uy = JQ2/S). (11

Using the assumptions of Table 3 for flow
in a smooth tube, equation (9) may be integrated
over the region y, < y < y,.. Separate integrals
are written for the viscous and turbulence
dominated regions, and the term du*/dy®,
integrated over 0 < y* < y;7, is added and
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subtracted to make use of equation (11).

Jun Wt
St (Pr, dy”* dy
[\)

ih
du”
dy*.
o,
0

The second integral, defined by equation (11),
is combined with the left-hand side of equation
(12) to give

(12)

A

¥
— +
£./28t, 1=f(Pr,—1)du s
0

JU2)

The upper limit of the integral in equation (13)
is a constant (y; =~ 26), and the velocity
distribution is defined by the law of the wall
[equation (3a)], which is assumed to be in-
dependent of the Reynolds number. Experi-
mental information indicates that the Reynolds
number has an insignificant effect on Pr, when
liquid metals are excluded [24]. Neglecting the
slight Reynolds number dependency, the integral
in equation (13) is a function only of Pr, ie.
F(Pr). Several formulations for F(Pr) are given
in the literature, e.g. the Prandtl and von
Karman analogy formulations. The widely
accepted numerical solutions of Deissler [25]
and Sparrow et al. [26] are well approximated,
especially for Pr > 1, by the empirical equation

F(Pr)=93(Pr — 1)Pr-* (14)

Substitution of equation (14) in equation (13)
and solving for the smooth tube Stanton
number,

Jsi2
1+93/(f/2)(Pr — 1) Pr~#

The integration of equation (9) for flow in a
rough tube, whose characteristic roughness is
e/D, follows a similar procedure. The integrals
are again written over the viscous and turbulence
dominated regions, and terms are added and
subtracted to make use of the identities. Using

St, = (15)
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the rough surface assumptions of Table 3, the
initial integral formulation is

et

JUD [ g0, dut
st Jg,r P‘d+dy
]
v§ du d
u
+ | (Pr,— )d —dy* +jd+dy+. (16)

+

o

Equation (16) includes the possibility that y,
may be less or greater than the roughness height,
e; the second integral drops out if y, < e. The
third integral can be written as {,/(2/f) — u[],
and equation (16) reduces to [c.f. equation (13)] :

d+
-j‘q‘ropzd +dy+
0o
yir

+

j (Pr, — :“+ dy*.
Assuming f is known, e* may be calculated,
and u; is given by equation (4b). The rough
surface Stanton number could be camputed if
the other variables in equation (17) were known.
This is precisely where fundamental knowledge
of flow over rough surfaces is lacking. Even the
detailed work of Nikuradse cannot be utilized
to determine the velocity distribution in the
roughness region y < e. However, if the inte-
grands in equation (17) can be defined as
functions of known variables, the equation will
define the parameters necessary to correlate the
rough surface heat transfer data. The variable
yy is not a constant, as for a smooth surface.
By law of the wall similarity, y," is a function of
e, and the variables /1, and u™ are implicitly
defined for geometrically similar roughness.
Assuming that the effect of Re on Pr, is negligible,
Pr, is a function of Pr for geometrically similar
roughnesses.

Dipprey and Sabersky proposed that law of
the wall similarity also applies to the tempera-
ture distribution in rough tubes, thus implicitly
defining the variable g/q,. Because equation

fRst—1
Jum T

(17)
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(17) requires evaluation of g/g, only over the
very small interval, 0 < y <e, one may just
as well propose g/q, ~ 1, or alternatively
9/q,, = (1 — y/R), which is usually assumed for
flow in smooth tubes. In either case, no new
functional arguments are specified. By this
reasoning, equation (17) is written in the
functional form

(f/28t — DiJ(f/2) + uf = ¢sle™, Pr)
+ ¢gle*, Pr) = gle*, Pr). (18)

If the Prandtl number dependency of equation
(18) can be separated,

(f/28t — V)/J(f12) + uS = gle*) F(Pr).  (18a)

Equation (18a) defines the correlating para-
meters for any geometrically similar roughness
whose . characteristic roughness dimension is
e/D. Repeated-rib roughness is geometrically
similar if p/e = constant. To account for
variation of p/e with the repeated-rib roughness,
equation (18a) is modified to

(f/28t — 1)//(f12) + u; = gle™, p/e) F(Pr). (18b)

EXPERIMENTAL PROGRAM

Experimental data were taken with circular
tubes having repeated-rib roughness to test the
correlating equations over a wide range of
roughness dimensions, Reynolds number and
Prandtl number. Five rough tube and one
smooth tube sections were constructed. Table
4 gives the dimensionless roughness parameters

Table 4. Test section description

Tube e;D pie
01,10 0-01 10
02/10 0-02 10
04/10 0-04 10
02,20 0-02 20
02/40

002 40

and defines a reference code for each of the
rough tubes.

The first three test sections have geometrically
similar roughness (defined within the concept
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of law of the wall similarity), and the second
plus the last two were constructed to determine
the effect of p/e. Data were taken on each test
section at three Prandtl numbers (0-71, 5-10 and
21-7) with 6000 < Re < 100000. The Prandtl
number range was obtained using three fluids:
air, water and n-butyl alcohol. Several of the
tubes were also tested with butyl alcohol at
Pr = 376 for which the maximum Reynolds
number was limited to 42000.

Each rough tube test section consisted of two
identical copper tubes having D = 36-83 mm
(145 in)) by 1524 c¢cm (60 in.) long. The first
tube served as an unheated hydraulic entry
section, and the second was electrically heated
and used for heat transfer measurements. The
repeated-rib test sections were fabricated by
first machining a number of pipe segments of
length p, each having a transverse rib, 0-38 mm
(0-015 in.) thick and height e. The tolerance on
all machined dimensions was within 0-040 mm.
The segments were stacked and brazed to form
the full length test sections. The brazing alloy
was prevented from flowing on the inner tube
surface. The brazed pipes were installed in a
lathe and turned down to 41-28 mm (1-625 in.)
o.d..and then cleaned. Two sets of five thermo-
couples, circumferentially separated 180°, were
installed in 0-30 mm square grooves machined
in the tube outer circumference. Nichrome
ribbon, 31-8 mm x 0-081 mm, was wrapped in
a helix on the heat-transfer tube. The Nichrome
ribbon was electrically insulated by 0-10 mm
thick adhesive backed Teflon tape, cemented to
the heating ribbon.

For operation with liquids, a pump supplied
liquid to a water-cooled heat exchanger. The
liquid then flowed thru the test section and back
to the pump suction which was maintained at
1-7 bars (25 psig). Operation with air flow was
accomplished by introducing compressed air
through a pressure regulator into the orifice
section and subsequently exhausting it into the
atmosphere downstream from the test section.
Test section heat input was provided by auto-
transformer controlled power supplies and
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measured by precision wattmeters. All wetted
surfaces were made from copper or stainless steel
to minimize corrosion and fouling.

Figure 4 shows the measuring section,
consisting of a smooth entry section, the rough
hydraulic entry and heat transfer test sections

RT
Rough

609

local variation of the inner wall temperature,
The degree to which the copper test section
achieved this condition was determined by
numerical solution of the heat conduction
equation using an approximation of the expected
local heat-transfer coefficient distribution. The

) entry Test section Mixing
section section {heated ) section
Sicm i52-4 ¢cm 152-4 ¢cm TEcm
{36in) 80 in} L {60in.} {30in)
0 19¢cm -~ 0-iI9cm O-19¢cm

RT — Resistance thermometer
T - Thermocouple

(75in.)
AP —Pressure drop
Vv —Test section wltage

F1G. 4. Sketch of instrumented measuring section.

and a mixing section. The entire measuring
section was thermally insulated by a surrounding
duct filled with Silica Aerogel. Nylon bushings,
19 mm (075 in) thick, bored to the base
diameter of the pipe, were precisely installed
between mating test section flanges. The test
section pressure drop was measured between
pressure taps drilled in the Nylon bushings,
The measuring section inlet and exit fluid
temperatures were measured by resistance
thermometers, and the test section pressure drop
with U-tube or travelling well micromano-
meters. The wall thermocouple millivolt output
was read on a precision potentiometer. A more
complete description of the apparatus is given
by Webb [27].

The local heat-transfer coefficient varies about
35 per cent from its peak value at the re-
attachment point to the rib location [14]. By
using a thick walled, high conductivity tube, a
constant heat flux applied to the tube external
surface will very nearly redistribute within the
tube wall, matching the local heat-transfer
coefficient distribution, resulting in a negligible

calculated local temperature difference (between
the outer wall and the fluid temperature)
differed about 1 per cent along the distance
between ribs.

The friction factors were determined with air
as the working fluid and without heat input.
They are based on the pressure drop over a
15244 cm tube length, preceded by a 91 cm
smooth and a 15244 cm rough development
length. The measured pressure loss was corrected
to account for the length of the smooth Nylon
bushings; the maximum correction applied was
only one per cent. The Prandtl number variation,
based on the average fluid temperature, was
held within +0-40 per cent. In order to minimize
the effect of fluid property variation in the wall
region, the test section power input was selected
to give Pr/Pr,, ~ 1-1 in the liquid tests. Two
additional, higher heat flux runs were taken
with the butyl alcohol at Re =~ 30000 to
determine the degree to which the heat-transfer
coefficients differed from the constant property
fluid condition. The property ratio exponent,
based on the Prandtl number, was found to be
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larger than observed for smooth tubes, 0-25 vs.
0-15. The rough tube liquid flow heat-transfer
data were not corrected to the constant property
condition, since the correction would reduce
the Stanton numbers only 2-3 per cent.
heat-transfer coefficient of the rough tubes is
defined in terms of the base area of the 36-83 mm
i.d. tube and does not include the surface area

increase due to the ribs.

Tha
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RESULTS AND DISCUSSION
Figure 5 shows the results for the smooth
tube. The friction factor agrees well with
equation (4a), shown on Fig. 5. The smooth

Smocth  tube

¢ this study
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Fi1G. 5. Smooth tube heat transfer and friction data.

tube Stanton numbers are corrected to the
constant property condition, multiplying St
by the factor (Pr/Pr,)”%!! as recommended by
Hufschmidt et al. [28] ; the correction amounted
to less than 2 per cent. The solid lines on Fig. 5
are the constant property Stanton number
predictions of the Sparrow et al. analytical
solution [26]. The experimental data agree well
with the analytical solution for Re > 10000.
The rough tube data are shown in Figs. 6 and
7. Figure 6 shows the data for the geometrically
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similar roughness (p/e = 10), and Fig. 7 shows
the effect of varying p/e, with /D = 0-:02. In the
“fully rough” condition, the friction factors
supposedly attain a constant value, independent
of Reynolds number. These data show a small
positive slope for Re > 100000. This may be
attributed to the very small scale roughness left
by the lathe cutting tool; this roughness was
judged to have e¢/D ~ 3 x 1075, The Stanton
number data, except for the roughest tube
(04/10), either show or suggest a maximum
Stanton number. The Reynolds number at
which this maximum occurs decreases slightly
as the Prandtl number is increased. The maxi-
mum Stanton number for Pr = 0-71 appears to
be attained just before the fully rough condition
is reached.

Correlation of friction data

Correlation of the rough tube friction data is
shown on Fig. 8. The data for the non-
geometrically similar roughnesses are displaced,
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FIG. 8. Friction correlating parameter u} vs. e*.

as expected, due to their different values of p/e.
The proposed ¢/D independence for geometri-
cally similar roughness is evaluated by
comparing the data for tubes 01/10, 02/10 and
04/10. The correlation for 02/10 and 04/10 is
excellent; however, the u} for 01/10 is about
12 per cent greater. The 01/10 friction factor is
about 7 per cent smaller than would be predicted
from the value of 4" for tubes 02/10 and 04/10.
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The dependence of u, on p/e was determined
by cross-plotting uS vs. et on logarithmic
coordinates, and the results are shown on Fig. 9.
The simple dependence, (p/e)~ 33, correlates
the data for e* > 35, and in the fully rough
region u} = 095 (p/e)°33.
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F1G. 9. Final friction correlation for repeated-rib tubes.

There are several possible explanations for
the slightly larger than anticipated values of
u; for the 01/10 tube, relative to that for tubes
02/10 and 04/10. The three tubes have the same
rib thickness so their roughnesses are not
precisely geometrically similar. Geometric
roughness similarity also requires that all radii,
fillets, etc., be shrunk in the same proportion;
this condition was not met in the machining
operation. A more probable possibility involves
the definition of an equivalent diameter. The
base surface is seldom taken as the origin for the
velocity distribution measurements with rough
surfaces. For example, Betterman [29] set the
origin at y = 0-6e-0-8¢ above the base surface
in his velocity measurements with rough
surfaces; this yielded a linear velocity distribu-
tion on logarithmic coordinates. The scatter of
the correlated friction data (corresponding to
Fig. 9) is reduced to about +6-0 per cent using
f and Re defined by the equivalent diameter
Dy=D—e

Correlation of the heat-transfer data
The heat-transfer data correlated in the
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functional form of equation (18b) are shown on
Fig. 10 for each of the four Prandtl numbers. No
significant dependence of g on p/e is observed
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F1G. 10. Heat-transfer correlations, g(e™, pse, Pr) vs. e* for

four Prandtl numbers.

except possibly for Pr > 21-7 with e* < 35. In
this region the data for p/e = 40 are about 15
per cent above the other data. Figure 10
indicates that g attains a minimum value at
= 12 for Pr > 5-1; however, a minimum is

not obvious for Pr = 0 71.
A cross-plot of g vs. Pr gives g oc Pr®37, The
final heat transfer correlation is shown on Fig. 11
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FiG. 11. Final heat transfer correlation, g(e*) vs. e* including
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as g(e*) vs. e*. The small effect of p/e on the
heat-transfer correlation is not considered signi-
ficant for engineering purposes and is not
included as an argument of the function g. The
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Prandtl number function for repeated-rib rough-
ness [c.f. equation (18b)] is F(Pr) = Pr—°57,
which is different from F(Pr) = Pr—°** found
by Dipprey and Sabersky for sand-grain
roughness.

The heat transfer and friction characteristics
are expected to approach a hydraulically smooth
condition at some small value of e*. The
dashed lines near the left-hand side of Fig. 11
show the curves of

(728t — DI/ + ul1 Pro%

predicted for hydraulically smooth tubes;
(f,/28t, — V)//(f,/2) is given by equation (14)
and u) = 2-51In e* + 55 is obtained using the
friction factor from equation (4a) in equation
(4b). The relative separation of these dashed
lines indicates a Prandtl number dependency
different from g oc Pr®>7 as the hydraulically
smooth condition is approached.

An equation for the Stanton number is

formulated from equation (18a) with
F(Pr) = Pr~ %7
St = /72 (19)

L+/(f2) [g(e ) Pro®7 —uf(e*, pje)]’
The correlations for uf(e*, p/e) (Fig 9) and
gle*) (Fig. 11) are used to compute the friction
factor and Stanton number. The following
procedure outlines the method for calculation
of fand St:

1. Specify the roughness geometry (e/D, p/e), the
fluid (Pr) and assume a value of e*.

2. Read (p/e)~%>3u}(e*, p/e) from Fig. 9 and
calculate uf (e*, p/e).

. Calculate f from equation (4b).

Read g(e*) from Fig. (11).

Compute St using equation (19).

Compute Re = e* /(2/f)/(e/D).

The calculation method requires e* as the
independent flow variable rather than Re.
However, using the above procedure it is easy to
compute the St, f and Re corresponding to
several values of e* and then to draw a graph of

o v W
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Stand fvs. Re. In the fully rough region(e* > 35)
the Stanton number and friction factor for
10 < p/e < 40 can be represented by equations
(20) and (21)t.

St
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repeated-rib air data for 10 < pje < 15 were
correlated within + 5 per cent.

Figure 13 shows the data for Pr = 0-71 and

21-7 correlated in the form 7 vs. e, as proposed

_ J12
T 1+ J72) [4:5(e*)° 28 Pro>7 — 095 (p/e)®>°] (20)
J@2if) = 251n(D/2e) — 375 + 095 (pje)° 33, (21)

Similar, but more complex, equations may be
written for St and fin the region 6 < e* < 35.
The g(e*) may be represented by a polynomial
in e*, but u does not show a simple p/e
dependency.

Comparison with other correlating methods
Additional confirmation of the heat-
momentum analogy correlation is provided by
comparing it with other methods frequently
found in the literature. Figure 12 shows the
present results for air plotted in the form
St/St, vs. e*. This correlation is not very good,
although the data for the geometrically similar
roughnesses are correlated within + 11 per cent.
These results are poorer than found by Sheriff
and Gumley [21] and Sutherland [22], whose

by Burck [11]. With the exception of the
roughest tube (04/10), the air data are well
correlated by this method. However, the cor-
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+ The constant 4-5 in equation (20) differs slightly from
that given in [27], which used 4-75.

relation for the Pr = 21-7 data is noticeably
poorer. The solid lines show the empirical
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function (e, Pr) proposed by Burck, which
apparently fails for e, > 1000. Burck shows a
substantially larger effect of Prandtl number on
n than found in this study.

Edwards {30] correlated his repeated-rib air
data with the heat-momentum analogy method,
butheused u, (e;,)and e\ rather thanu. (e*’ p/e)

200 T T T T T T T T
v
o Q‘v A v
| o ]
100tpr. 217 o P oo Ve 3
S g b ™ ]
fe 60 . 3
N 2 o a
- 40} ors 5. s 7 oea ]
Lllew o LI % 0 of ™ ¢ "7
‘gt xaY
gs =0 E'no.x.u"
u P/:O;II o #oeceo o
&h 0k e,k Tube
& 71 e 01710 ]
= 83 & 02/10 1
a 83 v 0410
48 o 02/20 |
21 o 02/40
2 L N i
I0 20 40 60 100 200 400 1000 4000 10000

&
Q’Jfég/?e W/

F1G. 14. Heat-momentum analogy correlation using equiva-
lent sand-grain roughness.

and e*. Figure 14 shows the data of the present
study correlated in the form used by Edwards.
The Pr = (-71 data are correlated about as well
as on Fig. 10 except that the data for tube 02/40
show a measurable deviation at the highest e ;
the deviation is even more pronounced at the
higher Prandtl number. The reason for the
poorer correlation is easily explained. Transla-
tion of the correlation from the e* plane to the
e.; plane shifts the data relatively by e/ /e™
along the abscissa and by U (e}) — u; (e*, p/e)]
along the ordinate. The vertical shift is nearly
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insignificant at the higher Prandtl numbers,
especially for p/e = 40. Values of e, /e for the
fully rough condition are tabulated on Fig. 14
and show that the geometrically similar rough-
ness data have received about the same shift.
However, the data for tubes 02/20 and 02/40
have been shifted only 60 per cent and 25 per
cent as much, respectively. Therefore, only
geometrically similar roughness data will be
correlated equally well by both methods. A
correlation based on g(e;) would have a
different exponent on the Prandtl number
function than the g(e*) correlation of Fig. 11.

The effect of Prandtl number

Perhaps the least understood aspect of rough
surfaces is the influence of the Prandtl number.
The Prandt] number influence may be evaluated
by examining the behavior of the variable
n = (St/St)/(f1f,). If the effect of Prandt] number
on the Stanton were the same for rough and
smooth tubes, n (or St/St,) would be independent
of Prandtl number. This # parameter may also
be described as an “‘efficiency index”, since it
defines the relative friction expenditure (f/f)
necessary to yield a given heat transfer aug-
mentation (St/St,) for equal Reynolds number.
An equation for 75 results by substituting
equations (15) and (19) in the equation which
defines 7.

1+ 93/ (Pr — ) Prt
L+ @GP — )

Using equation (4b) for /(2/f) and the Blasius
friction factor for \/(f,/2), which is defined in
terms of e*, equation (22) becomes

(22)

- 9-3,/(a/2)(Pr — 1) Pr %
_ {e*[uf(e*,p/e) — 375 — 2:51n(2¢/D)]}*?
= g ) P — w3 (e, pje)
ul(e*,p/e) — 375 — 2:51n (2¢/D)

(23)

1+
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where the constants a and b apply to the
Blasius friction factor (@ = 0-079, b = 0-25 for
Re < 50000 and a=0046, b =020 for
Re > 50000).

Equation (23) has the functional form
n = nle*, p/e, e/D, Pr), which is graphically
portrayed on Fig. 15 for p/e = 10. The lower
portion of Fig. 15 shows the influence of Pr on 5
for e/D = (0-01. The Prandt] number dependency
of rough tubes is about equal to that of smooth
tubes for e* > 250. However, for e* < 250 the
rough tube Prandtl number dependency differs
substantially from that of smooth tubes. The
upper portion of Fig. 15 shows the degree to
which # is also influenced by e¢/D.

The results shown in Fig. 15 differ from the
conclusions of Kalinin [7] and Burck [11].
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Kalinin found that # is essentially independent
of Prandtl number, which agrees with this work
only for e* > 250. Burck argues that all
roughness geometries have the same curves of
ne;,, Pr) and concludes a negligible dependency
of n on e¢/D. Except for the ¢/D dependency,
Burck’s conclusions are in qualitative agreement
with this work only for e™ < 250 (or ¢/, < 1000).

A comparison of this data with other existing
repeated-rib data, as well as other roughness
types, will be presented in a future publication.
A quantitative criterion for selection of the ¢/D,
which yields a high value of # and St/St, at any
arbitrary Reynolds number, will also be given
in this paper.

4 Influence of e/ 08
on m for Pr=51
I {08
n
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CONCLUSIONS

1. Repeated-rib friction data are well correlated
(Fig. 9) using law of the wall similarity with a
logarithmic velocity distribution.

. The heat-momentum transfer anaiogy, based
on law of the wall similarity, adequately
correlates the repeated-rib heat transfer data
over a wide range of ¢/D, p/e and Pr (Fig. 11).
This correlation is found to be superior to
other methods, especially in accounting for
the effect of Prandt! number,

3. The heat transfer and friction correlations
may be extended to a wider range of e/D by
virtue of law of the wall similarity. The
correlations specifically apply to ribs of
rectangular cross-section, whose thickness is
small relative to the rib spacing.

4, This work and the prior studies of Nikuradse,
and Dipprey and Sabersky offer strong
arguments for application of law of the wall
similarity and heat-momentum analogy cor-
relating methods to geometrically similar
forms of arbitrary roughness.

5. The results of this study argue against a
single correlation for all roughness geometries,
as proposed by Burck.

(\®]

REFERENCES
. W. NUNNER, Heat transfer and pressure drop in rough
pipes, VDI-Forsch. 22, 455B (1959). English trans.,
AERE Lib./Trans. 786 (1958).

2. R. KocH, Pressure loss and heat transfer for turbulent
flow, VDI-Forsch. 29, 469B (1958). English trans.,
AEC-1r-3875 (1960).

3. J. Garcaup and G. PAUMARD, Ameloration du
transfert de chaleur par 'emploi de surfaces corrugees,
Commissariat a L’energy Atomique, Report CEA-R
2464 (1964).

4. J. MoLLoY, Rough tube friction factors and heat transfer
coefficients in laminar and transition flow, UKAEA
AERE-R5415 (1967).

5. W. A. SUTHERLAND and C. W. MILLER, Heat transfer to
superheated steam—II, improved performance with
turbulence promoters, USAEC Report, GEAP-4749
(1964).

6. E.C. BROUILLETTE, T. L. MIFFLIN and J. E. MYERs, Heat
transfer and pressure drop characteristics at internal
finned tubes, ASME Paper 57-A-47, presented at ASME
Annual Meeting, New York (Dec. 1957).

7. E. K. KALININ, G. A, DREISTLER and S. A. YARKHO,
Experimental study of heat transfer intensification

—



616

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. L. WEBB, E. R. G. ECKERT and R. J. GOLDSTEIN

under condition of forced flow in channels, JSSME
Semi-International Symp., paper 210 (1967).

. E. W. Sams, Experimental investigation of average heat

transfer and friction coefficients for air flowing in
circular pipes having square-thread type roughness,
NACA RM-E 52D17 (1952).

. V. GoMELAURI, Influence of two-dimensional artificial

roughness on convective heat transfer, Int. J. Heat
Mass Transfer T, 653663 (1964).

V. KOLAR, Heat transfer in turbulent flow of fluids
through smooth and rough tubes, Int. J. Heat Mass
Transfer 8, 639-653 (1964).

E. BURCK, Influence of Prandt] number on heat transfer
and pressure drop of artificially roughened channels,
Wéarme-u. Stoff” 2, 87-98 (1969).

W.B. HarLL, Heat transfer in channels having rough and
smooth surfaces, J. Mech. Engng Sci. 4, 287-291 (1962).
F. J. EDWARDs and N. SHERIFF, The heat transfer and
friction characteristics for forced convection air flow
over a particular type of rough surface, International
Developments in Heat Transfer. ASME, 415-425 (1961).
W. H. EMERSON, Heat transfer in a duct in regions of
separated flow, Proc. Third Int. Heat Transfer Conf.
1, 267-275 (1966).

T. J. MUELLER, On separation, re-attachment and
redevelopment of turbulent boundary layers, Ph.D.
Thesis, Univ. of Ili. (1961).

C. K. Liu, S. J. KLINE and J. P. JOHNSTON, An experi-
mental study of turbulent boundary layers on rough
walls, Stanford Univ. Report MD-15, pp 547-553
(1966).

T. UepaA and I. HARADA, Experiments of heat transfer
on surfaces with transverse fins for flow direction, Bull.
JSME, 7, 759-768 (1964).

J. G. KNuDseN and D. L. Kartz, Fluid Dynamics and
Heat Transfer, p. 197. McGraw-Hill, New York (1958).
J. NIKURADSE, Laws of flow in rough pipes, VDI Forsch.
361 (1933). English translation. NACA TM-1292 (1965).
D. F. DippreY and R. H. SaBersky, Heat and momen-
tum transfer in smooth and rough tubes at various

21.

22.

23.

24,

25.

26.

27.

28.

29.

31.

Prandtl numbers, Int. J. Heat Mass Transfer 6, 329-353
(1963).

N. SHERIFF and P. GUMLEY, Heat transfer and friction
properties of surfaces with discrete roughness, Int. J.
Heat Mass Transfer 9, 1297-1320 (1966).

W. A. SUTHERLAND, Improved heat transfer performance
with boundary layer turbulence promoters, Int. J. Heat
Mass Transfer 10, 1589--1599 (1967).

J. C. ROTTA, Recent developments in calculation
methods for turbulent boundary layers with pressure
gradients and heat transfer, J. Appl. Mech. 88, 429
(1966).

E. R. G. Eckert, Heat transfer—a lecture at the
Osborne Reynolds Centenary Celebrations, Univ. of
Manchester, England, to be published in the Celebration
Proceedings (Oct. 1968).

R. G. DEISSLER, Analysis of turbulent heat transfer,
mass transfer and friction in smooth tubes at high
Prandtl and Schmidt numbers, NACA Report 1210
(1955).

E. M. SparrOow, T. M. HALLMAN and R. SIEGEL,
Turbulent heat transfer in the thermal entrance region
of a pipe with uniform heat flux, Appl. Sci. Res. A7,
37-52 (1957).

R. L. WEesB, Turbulent heat transfer in tubes having two-
dimensional roughness, including the effect of Prandtl
number, Ph.D. Thesis, University of Minnesota (1969).
W. HurscumipT, E. BURCK and W. RieBoLD, Die
Bestimmung Ortlicher and Mittlerer Wirmeiiber
gangzahlen in Rohren bei Hohen Warmestromdichten,
Int. J. Heat Mass Transfer 7, 539-565 (1966).

D. BETTERMAN, Contribution a I’étudé de la convection
forcée turbulent le long de plaques rugueuses, Int. J.
Heat Mass Transfer 9, 153-164 (1966).

. F. J. EbpwARDS, The correlation of forced convection

heat transfer data from rough surfaces in ducts having
different shapes of flow cross-section, Proc. Third
Int. Heat Transfer Conf. 1, 32-44 (1966).

J. O. Hinzg, Turbulent pipe flow, The Mechanics of
Turbulence, pp. 129-165. Gordon & Breach, New York
(1961).

TRANSFERT THERMIQUE ET FROTTEMENT DANS DES TUBES A RUGOSITE
ANNULAIRE REPETEE

Résumé—On développe des corrélations de transfert thermique et de frottement pour un écoulement
turbulent dans des tubes ayant une rugosité annulaire répétée. La corrélation de frottement est basée sur
la loi de similitude de la paroi qui est la méme méthode qu’utilise Nikuradse pour la rugosité des grains de
sable. La corrélation de transfert thermique applique 4 un écoulement sur une surface rugueuse ’analogie
de transfert chaleur-quantité de mouvement qui a d’abord été utilisée par Dipprey et Sabersky pour la
rugosité de grains de sable. Les corrélations sont vérifiées a I'aide des résultats expérimentaux relatifs a
0,01 < e/D < 0,04 et 10 < p/e < 40 et couvrant le domaine 0,71 < Pr < 37,6. Les corrélations peuvent
étre étendues 4 un domaine plus large du rapport e¢/D en vertu de la loi de la paroi. Les bons résultats
obtenus dans cette étude, renforcés par 1'étude antérieure de la rugosité des grains de sable, offrent un
argument important pour I’application de méthodes corrélatives & d’autres géométries de rugosité. Le
succés de I'analogie chaleur-quantité de mouvement est comparé 4 d’autres méthodes fréquemment
trouvées dans la littérature.
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WARMEUBERGANG UND REIBUNG IN ROHREN MIT RIPPENFORMIGEN
RAUHIGKEITEN
Zusammenfassung—Fiir turbulente Stromung in Rohren mit rippenformigen Rauhigkeiten wurden
Beziehungen fiir den Wirmeiibergang und die Reibung aufgestellt Die Reibungsbeziehung ist aufgebaut
auf dem Wandahnlichkeitsgesetz nach derselben Methode, die Nikuradse fiir Sandkornrauhigkeit ver-
wendete. Die Warmeiibergangsbezichung basiert auf der Anwendung einer Wirme- Impulsiibertragungs-
analogie fiir die Strdmung iiber rauhe Oberflichen, die zuerst von Dipprey und Sabersky fiir Sandkorn-
rauhigkeit benutzt wurde. Die Beziehungen wurden verwirklicht mit Versuchsergebnissen firr 0,01 <
¢/D < 0,04 und 10 < p/e < 40 im Bereich 0,71 < Pr < 27,6. Die Beziehungen koénnen dank des Wand-
gesetzes auch auf einen grosseren Bereich von ¢/D angewandt werden. Die guten Ergebnisse in dieser
Arbeit, die auch durch frithere Arbeiten iiber Sandkornrauhigkeit unterstiitzt werden, sprechen stark
fir Anwendung der Korrelationsmethoden auf andere Rauhigkeitsgeometrien. Die Analogiebezichung
zwischen Wirme- und Impulsiibertragung wird mit anderen Methoden verglichen, die sich haufig in der
Literatur finden.

TEIIJIOOEMEH 11 TPEHUE B TPYBAX C PABHOMEPHON
IMEPOXOBATOCTBIO

AsdoTanua—PaspafoTantl 0600IA0IIME COOTHOIIEHMA MO TEIIOOOMEHY U TPEHMIO HJIA
TypSyneHTHOr0 NOTOKA B Tpy6ax ¢ PABHOMEDHOI LIEPOXOBATOCTEIO. B OCHOBY COOTHOIIEHUA
10 TPEHUIO JeT 3aKOH I0XO0UA CTEHOK W METOJ, HCmob3oRaHHm Hukypaase i umepoxosa-
TOCTH necka. COOTHOIIEHME MO TemIo00MeHy OCHOBAHO HA NPUMEHEHWM AHAJIGTUM TepeHoca
TeITa i KOJMYECTBA NBMKEHHA K MOTOKY HA NIEPOXOBATON MOBEPXHOCTH, BNEPBEHIE NpHMe-
HeHHO#l Jlunnpeem u CabepckuM I8 MeEPOX0OBATOCTH Mecka. COOTHOIIEHHA MOATBEDHAAIOTCH
AKCTIepUMeHTAIbHBIMI [lanubivu, BaaTeiu ana 0,01 < e/D < 0,04 u 10 < ple < 40 B
nnanasone 0,71 < Pr < 37,6. Bnarogapa 3akoHV cTelkn o00O0GIIAON{HE COOTHOLUEHUSA
MoryT OBITH pacluMpeHbl 0 Gojiee UIMPOKOro Iuamasona e/D. Xopolme pesysbTaTH,
IOJYYeHHBIE IPM 3TOM MCCJIEJOBAHMM U NOJIKPENUIEHHEIe NpeAbaylielt pabotolt mo
IIePOXOBATOCTH IIECKA, CBHAETEJBCTBYIOT B I0JIb3Y MPHMEHEHHH KOPPEIALUOHHHX METOJ0B
K IpYTHUM LIePOXOBATHIM TeéOMETPHAM . Pe3yIbTaTHBHOCTE KOPPEJIALMY [I0 AHAJOTHA TepeHoca
TEMJIA M KOJIMYEeCTBA [BUMEHNA CPABHHBAETCA C APYTUMU METOJAMI, YaCTO BCTPEUYAOLIIMHCA
B JIUTEPATYpE.
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