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Abstract-Heat transfer and friction correlations are developed for turbulent flow in tubes having a 
repeated-rib roughness. The friction correlation is based on law of the wall similarity and is the same 
method employed by Nikuradse for sand-grain roughness. The heat transfer correlation is based on 
application of a heat-momentum transfer analogy to flow over a rough surface, which was first used by 
Dipprey and Sabersky for sand-grain roughness. The correlations are verified with experimental data 
taken with 0.01 < e/D < 0.04 and 10 <p/e < 40 and covering the range 0.71 < Pr < 37.6. The 
correlations may be extended to a wider range of e/D by virtue of the law of the wall. The good results 
obtained in this study, supported by the prior work with sand-grain roughness, offer strong argument 
for application of the correlating methods to other roughness geometries. The success of the heat- 

momentum analogy correlation is compared with other methods frequently found in the literature. 
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NOMENCLATURE 

pipe inside diameter (to base of ribs); T+, dimensionless temperature, 
equivalent diameter D,, = D - e ; T+ = ~(q,&,u*); 
defined by Hall [ 121; U, local fluid velocity; 
height of roughness element ; U 0 velocity at pipe centerline ; 
equivalent sand-grain roughness, U In, average fluid velocity ; 
In (e,,;e) = (8.48 - u,‘)/25; u+, dimensionless velocity, u+ - u/u* ; 
e + = eu*/v = (e/D) Re,/fi2 ; U+ 

-‘+’ 
UT = ,/(2/f) + 25 In (2e/D) + 3.75; 

+ = e P/v ; 

~r%t~odictor, f = (AP/L) D/2u2 . 

U 

U;,’ 

ii,’ = ,/(2/f) + 2.5 In (2e,,/D) + 3.75 ; 

Prandtl number function, cf. equmaions 
“friction velocity,” u* = J(zOip) ; 

y, coordinate distance normal to wall ; 
(14) and (18a); Yb, 

g = Cf/zst - 1)/&2) + 24,’ ; 
thickness of viscous influenced region ; 

Y+, dimensionless distance, y + E yu*/v ; 
S = gPr_“(n = 0.57 for repeated- y,, distance from wall at which u = u,. 
ribs) ; 
distance between repeated-ribs ; Greek symbols 
Prandtl number, evaluated at T,, ; 6 thermal diffusivity, c( z k/PC ; 
effective Prandtl number, Pr, = v,pE ; % effective diffusivity, a, = c( + E,, ; 
heat flux ; &h? eddy diffusivity of heat ; 
pipe radius ; E eddy diffusivity of momentum ; 
Reynolds number Re - Du,/v ; 4-T’ efficiency index, q = (St/St,)/y%f,) ; 
Stanton number ; 4, general functional specification ; 
mixed mean fluid temperature ; V, kinematic viscosity ; 
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effective kinematic viscosity, 
v, = v + s,; 
local time average shear stress ; 

apparent wall shear stress, 
,rO ZE - (D/4)dP/dX; 
wall shear stress. 

Subscripts 
W evaluated at y = y, ; 

s, smooth tube ; 

M’, evaluated at wall. 
Unsubscripted f; St, F(Pr) refer to rough tube. 

INTRODUCTION 

THIS study seeks to develop a generalized under- 
standing of the Stanton number and friction 
characteristics of “repeated-rib” roughness in 
turbulent pipe flow. The roughness geometry is 
shown in Fig. 1 and is described by the 

D Retafive roughness 

FIG. 1 
p/e Relotrve rib spacrng 

Characteristic dimensions of repeated-rib roughness. 

dimensionless parameters e/D and p/e, assum~g 
that the rib thickness is small, relative to the rib 
spacing. This understanding will permit pre- 

diction of the friction factor as a function of the 
variables e/D, p/e and- Re. The Stanton number 
is described as a function of the same variables, 
plus the Prandtl number. 

A number of heat-transfer measurements have 
been performed for repeated-rib roughness in 
pipe flow, as shown in Table 1. This body of 
work has not resulted in a rationally based 
correlation for the St and f as a function of the 
geometric variables (e/D, p/e) and Prandtl 
number. Most of the data were taken in the 
fully rough region (wherefis independent of Re) 
resulting in an incomplete understanding of the 
heat transfer characteristics in the transition 
region before the fully rough condition is 
attained. In addition, most of the work was done 
with air flow so the Prandtl number influence 
is not well established. Those who have studied 
the effect of Prandtl number in rough tubes 
offer conflicting results. Gomeiauri [9], who 
worked with an annular flow, and Kalinan [7] 
indicate that the Prandtl number dependency of 
repeated-rib roughness and smooth tubes is 
approximately equal. However, Kolar [lo] and 
Burck [ 1 l] used a screw-thread type roughness 
(pie 2~ 2) in pipe flow and found that the heat 
transfer au~entation, St/St, for a given rough- 
ness, increases with increasing Prandtl number. 

Considerable data exist for repeated-rib 
roughness in an annular flow geometry in which 
the inner annulus surface is rough and the outer 
surface is smooth. The hydraulic diameter 
reasonably correlates smooth annular flow 
friction data with pipe data, but the concept does 

Table 1. Datufor repeated-rib roughness in cirdar tubes (T-transverse ribs; H-rib in hrl~cul jbrm) 
:z_ _____~_ 

Ref Author Rib type e;D p:u RexiW’ Pr 
__- _ -- ..----. ~~~-~- ----- 

[I] Nunner 
[2] Koch 
[3] Gargaud et al. 
[4] Molloy 
[5] Sutherland et al. 
[6] Brouilette et al. 
[7] Kalinin et al. 
[S] Sams 
- This study 

__~ 

rlL 
--__ 

A__ T O@t-O~OS 
i T 0~04025 

z-Q._ _ - H, T O~ooo4-o~O16 
H 0014 

--- H 09035 
-‘-_ H 0‘005-0~10 

r\ __~~~ T 0015-005 
H 0~#8-002 
T O.Ol~Q4 

_____._- ~ ---.- 

2281.7 
44200 
1,1~_15 

10 
11.8 
5-14 

20-100 
1-O 

l&40 

i-100 
l-100 

200-3000 
2270 

IO-400 
3%150 
lo-140 

5-300 
66100 

_..-~...-.. _ 

0.7 
0.7 
0.7 
0.7 
1 .o 
water 
07-50 
0.7 
0.7--38 
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not hold when only one surface of the annulus 
is roughened. An equivalent diameter, D:,, has 
been proposed by Hall [ 121, who theorizes that 
annulus data based on the derived e/D& should 
agree with the results obtained in pipe flow for 
geometrically similar roughness if e/D& = e/D. 

Although the repeated-rib surface may be 
considered as a “roughness” geometry, it may 
also be viewed as a problem in boundary layer 
separation and reattachment. Figure 2 showsa 

FIG. 2. Flow patterns as a function of p/e. 

catalog of flow patterns downstream from a rib, 
as a function of the relative rib spacing (p/e). 
Separation occurs at the rib, forming a widening 
free shear layer which reattaches 6-8 rib 
heights downstream from the separation point. 
A reverse flow boundary layer originates at the 
reattachment point and grows in thickness in the 
upstream region. The boundary layer tends 
toward redevelopment downstream from the 
reattachment point. The wall shear stress is zero 
at the reattachment point and increases from 
zero in the reverse flow and reattachment 
regions ; however, the direction of the shear 
stress is opposite in these regions. Reattachment 
does not occur for p/e less than about eight. 

Measurements of the local heat-transfer co- 
efficient downstream from the rib [ 13, 141 show 
that a .maximum heat-transfer coefftcient occurs 
in the vicinity of the reattachment point. The 
local heat-transfer coefficients in the separated 
flow region are larger than those of an un- 
disturbed boundary layer, although this is not 
true for laminar flow downstream from a rib. 

Friction correlation 
A friction correlation for flow over “sand- 

grain” roughness was developed by Nikuradse 
[ 191. Based on law of the wall similarity, 
Nikuradse found that his data, covering a wide 
range of e/D, was correlated by the friction 
similarity function-t 

u,‘(e’) - 4(2/f) + 2.5 In (2eiD) + 3.75 

where e+ is the “roughness Reynolds number”. 
If law of the wall similarity is assumed applicable 
to arbitrary types of roughness, the same para- 
meters should correlate the friction data for any 
geometrically similar roughness fami1y.S A 
generalized friction correlation for the repeated- 
rib roughness, which accounts for both rough- 
ness parameters (e/D and p/e), has not been 
established. 

Heat transfer correlation 
Nunner [l] was the first to propose a flow 

model. He proposed that the roughness acts 
to reduce the thermal resistance of the turbulence 
dominated wall region without significantly 
affecting the viscous region. He likened this to 
the temperature profile in smooth tube flow at 
increased Prandtl number. The argument was 
quantified by using the Prandtl analogy and 
replacing Pr by (flf,))Pr. This model predicts 
decreasing St/St, with increased Prandtl number, 
contrary to the previously discussed results. 

t The function u:(e+) used here is equivalent to the 
symbol B(e+) used by Nikuradse. In the “fully rough” 
condition (e’ > 70), B(e+) = 8.48. 

$ A family of repeated-rib roughness is defined as 
geometrically similar if p/e = constant and the rib shape is 
not varied. 
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Further, it predicts that St/St, is independent of 
the roughness type. 

Assuming that law of the wall similarity 
applies to the temperature profile as well as to 
the velocity profile, Dipprey and Sabersky [20] 
developed a heat-momentum transfer analogy 
relation for flow in a sand-grain roughened 
tube. They achieved excellent correlation of their 
data using the correlation 

(fi2St - l)/Jm2) + 8.48 = g(e’, Pr). 

They assumed that their roughness closely 
approximated that used by Nikuradse and 
calculated e+ in terms of the Nikuradse sand- 
grain roughness, using UT = 8.48. The concept 
proposed by Dipprey and Sabersky is so general 
it may apply to any roughness for which law of 
the wall similarity holds. Sheriff and Gumley [21] 
applied the concept to their repeated-rib annulus 
air flow data using a friction factor defined in 
terms of D& and likewise achieved good 
correlation. 

Sutherland [22] and Sheriff and Gumley [21] 
have found that the empirical correlation St/St, 
vs. e+ worked as well as the Dipprey and 
Sabersky model for air flow over repeated-ribs 
with pie = 10. 

Using data for several basic types of non- 
geometrically similar roughnesses (repeated-rib, 
sand-grain and screw-threads), Burck [ll] con- 
cluded that the heat-transfer data of all rough- 
ness geometries may be correlated in the form 
r(e&, Pr), where e& is the equivalent Nikuradse 
sand-grain roughness. Thus, Burck concludes 
that all roughness types yield the same per- 
formance (e.g. the same q) if evaluated at 
equal es&. 

It should be noted that none of the correla- 
tions can be reduced to yield equivalent algebraic 
expressions. 

ANALYSIS 

The flow over a rough surface is not suf- 
ficiently understood to permit heat transfer and 
friction prediction by analytical methods nor is 
there even general agreement on the parameters 

which should be used to correlate the data. 
Law of the wall similarity is, however, a 

The rough surface analysis employs essentially 

reasonably well accepted concept, and a friction 

the same concepts, which are commonly accepted 

correlation based on this concept seems 
warranted. Due to the good results achieved by 
Dipprey and Sabersky, the heat-momentum 

in analysis offlow over smooth surfaces, although 

transfer analogy, based on law of the wall 

certain assumptions are different. Parallel 

similarity, offers promise of application to other 
types of geometrically similar roughnesses. These 

analyses will be shown for the rough and smooth 

concepts will be developed and applied to 
correlation of the repeated-rib data. 

surface cases in order to show the similarities 
and differences of the two cases. The rough 
surface analysis is developed for an arbitrary 
roughness geometry whose characteristic dimen- 
sion is e/D. Subsequently, the results are extended 
to include the p/e dimension. 

Momentum transfer analysis 
Measured velocity distributions show that the 

effects of viscosity and surface roughness differ 
in the inner and outer regions of the turbulent 
boundary layer. In the outer region the velocity 
defect, (u, - u)/u*, is insensitive to viscosity and 
roughness. This “velocity defect law” is described 
by equations (la) and (lb) in Table 2. In 
contrast the velocity near the wall is sensitive, 
both to viscosity and the type of roughness; this 
phenomenon is termed “law of the wall” 
similarity and is described by equations (2a) and 
(2b) of Table 2. Law of the wall similarity implies 
that the wall region velocity distribution for 
geometrically similar roughness depends only 
on e+ and is independent of the pipe Reynolds 
number. Based on a detailed re-evaluation of 
velocity distribution measurements in smooth 
and rough pipes, Hinze [31] concludes that 
these velocity distribution laws do not appear to 
be strictly independent of pipe Reynolds number, 
and so they should be regarded as good 
approximations. Assuming a region of overlap 
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(a region in which either law adequately predicts 
the velocity in at least a small region Ay/R), the 
law of the wall and the velocity defect law are 
combined to give algebraic equations for the 
turbulence dominated part of the wall region 
[equations (3a) and (3b)] ; the constants are 
those proposed by Nikuradse [18]. The smooth 
surface equation holds beyond y+ N 26 from 
the surface, and the rough surface equation is not 
expected to hold for y < e. Equations (3a) and 
(3b) are frequently assumed to hold up to the 
pipe centerline, although this is an approxima- 
tion. Assuming that equations (3a) and (3b) hold 

pipe flow following a somewhat different deriva- 
tion than that used by Dipprey and Sabersky. 
The development assumes that the heat and 
momentum transport equations of fully develop- 
ed flow can be approximately applied to the 
flow in a rough pipe. The assumption should 
be reasonable in the region y > e with small e/D. 
In the region y < e, where radial velocities 
exist, one may postulate that the concept 
involves the equivalent fully developed transport 
equations of the spatially averaged periodic flow. 

With flow in a smooth tube, the only forces 
in the axial direction are the static pressure 

Table 2. Velocity distribution and friction expressions 
___-- 

Smooth tube Rough tube 

(u, - u)/u* = 4l(yiR) (la) (u, - u)ju* = +,(yiR) (lb) 
U/U* = 4dYU*P) (24 U/U* = &b/e) + d&U*04 WI 

u:u* = 2.5 In (yu*iv) + 53 (3a) UjU* = 2.5 In (y/e) + u:(e+) (3W 
J(2i.f) = 23 In (Du*/2v) + 1.75 (4a) 4(2/f) = 2.5 In (Dj2e) + u:(e+) - 3.75 (4b) 

- __- 

approximately over the entire cross-section, the 
friction factor is given by the integrated velocity 
distribution, equations (4a) and (4b). Equation 
(4b) defines the friction similarity law for rough 
surfaces ; thus, u,’ vs. e+ should correlate all 
friction data for any type of geometrically 
similar roughnesses. According to equation (3b), 
ut is the average dimensionless velocity at 
y = e. In the fully rough condition u,’ attains a 
constant value, which implies that the wall 
region velocity distribution is not affected by 
the fluid viscosity, and that any viscosity effects 
are confined within y < e. Equation (3b) shows 
that u,’ should be independent of tube diameter 
for geometrically similar roughness. Nikuradse 
found this to be true for sand-grain roughness 
in fixed diameter tubes whose e/D varied as 
much as 16: 1. It is reasonable to expect the 
same result for the repeated-rib roughness, 
although u: will be a function of p/e as well as 
of e+. 

The heat-momentum transfer analogy is 
developed for a turbulent, Newtonian fluid in 

gradient and the fluid shear stress ; as a conse- 
quence, a linear shear stress distribution exists. 

.l dP r r, ---=- 
2p dx (R - y) = x’ (5) 

Equation (5) is commonly applied to flow in 
rough tubes by replacing the wall shear stress 
(z,J by rO, which arbitrarily assigns the effect of 
all drag forces to the wall. Thus for the rough 
surface, 

1 dP ---_= 
2pdx & = f’ (6) 

Equation (6) should well approximate the 
shear stress distribution for y > e but not in the 
roughness region (y < e) where pressure forces 
act on the roughness elements. Figure 3 illustrates 
the radial distribution of the stream-wise 
averaged shear stress using equation (6) only 
for the region y > e. Figure 3 proposes that the 
shear stress distribution in the region y < e is 
significantly different from that which exists in 
smooth tubes. 
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With this introduction, the dimensionless 
transport equations for fully developed, turbu- 
lent flow are applied to both rough and smooth 

equation (6) for y>e 

FIG. 3. Qualitative description of rough surface shear stress 
distribution. 

surfaces using the apparent wall shear stress (rO) 
defined by the static pressure gradient. 

z v du+ 
-_= -!- 
70 v dy+ 

4 v 1 dT+ 
-_= _ -!- 
4w v Pr,dy+’ 

(7) 

The heat-momentum analogy 
Substitution of equation (7) in equation (8) 

and integration gives 

Yt 

T,+ - T,’ = 
s 

A5Pr d”+dy+. 
“dy+ 

(9) 
4w 7 

0 

The assumptions employed in the integration 
of equation (9) for rough and smooth surfaces 
are shown in Table 3. The first assumption 
specifies that molecular effects may be neglected 
in the turbulence dominated region y > y,. The 
effective Prandtl number is taken as unity in the 
turbulence dominated region (second assump- 
tion). Although this assumption may be debated, 
Rotta [23] has shown that moderate variation 

of Pr, in the turbulence dominated region will 
have little effect on the Stanton number. Equal 
heat flux and shear stress distributions are 
usually assumed (assumption three) for smooth 
tube flow. The same assumption is applied to 
the rough surface only for the region y > e. The 
previous discussion of the rough surface shear 
stress distribution argues against this assumption 
for the region y < e. The fourth assumption is 
that the temperature at y,,, (where u = u,) 
should be approximately equal to the mixed 
mean fluid temperature. The validity of this 
assumption for smooth surfaces may be deter- 
mined by comparing the von Karman and 
Martinelli analogy formulations for smooth 
tubes. For E,, = E,, both analyses use the same 
velocity distribution; the von Karman analysis 
utilizes the T, N T,, assumption, whereas the 

Table 3. Assumptions used for integration of equutron (9) 

Assumption 

E&J 9 1. &),,a 9 1 
Pr, = 1 

4 to 

4, T 
L = L 

Smooth 

Y > Yh 
Y ’ Yb 

Y>O 

Y = Ym 

Rough 

Y > Yb 
y ’ Yh 

y > e 

Y = y, 

Martinelli analysis does not. The predicted 
results differ by about four per cent at Pr = 1 
and have a negligible difference for Pr > 10. 
Slightly larger errors may occur for rough tubes. 

For convenience, the identities defined by 
equation (10) and (11) will be used in the 
integration of equation (9). 

Tz - T,‘y z J(fi2)/St (10) 

u,’ = J(2/f). (11) 

Using the assumptions of Table 3 for flow 
in a smooth tube, equation (9) may be integrated 
over the region yb < y < y,. Separate integrals 
are written for the viscous and turbulence 
dominated regions, and the term du+/dy+, 
integrated over 0 < y+ < yb+, is added and 
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subtracted to make use of equation (11). 

(Pr, - l)$dy+ 

0 

‘vi &,+ 

+ dy+ f 
pdy+. (12) 

0 

The second integral, defined by equation (1 l), 
is combined with the left-hand side of equation 
(12) to give 

0 

The upper limit of the integral in equation (13) 
is a constant (y,’ N 26), and the velocity 
distribution is defined by the law of the wall 
[equation (3a)], which is assumed to be in- 
dependent of the Reynolds number. Experi- 
mental information indicates that the Reynolds 
number has an insignificant effect on Pr, when 
liquid metals are excluded [24]. Neglecting the 
slight Reynolds number dependency, the integral 
in equation (13) is a function only of Pr, i.e. 
FAPr). Several formulations for FJPr) are given 
in the literature, e.g. the Prandtl and von 
Kgrrnti analogy formulations. The widely 
accepted numerical solutions of Deissler [25] 
and Sparrow et al. [26] are well approximated, 
especially for Pr > 1, by the empirical equation 

FJPr) = 9.3 (Pr - 1) Pr-+. (14) 

Substitution of equation (14) in equation (13) 
and solving for the smooth tube Stanton 
number, 

fd2 
St, = 1 + 9.3&/2) (Pr - 1) Pr-“’ 

(15) 

The integration of equation (9) for flow in a 
rough tube, whose characteristic roughness is 
e/D, follows a similar procedure. The integrals 
are again written over the viscous and turbulence 
dominated regions, and terms are added and 
subtracted to make use of the identities. Using 

the rough surface assumptions of Table 3, the 
initial integral formulation is 

0 

Ybf 

s 

+ ” &,+ 

+ (Pr, - l)*dy+ + 
dy+ s 

?dy+. 
dy 

(16) 

I?+ e+ 

Equation (16) includes the possibility that y, 
may be less or greater than the roughness height, 
e ; the second integral drops out if y, < e. T’he 
third integral can be written as [,/(2/f) - u,‘], 
and equation (16) reduces to [c.f. equation (13)] : 

f/=t-l+U+=e+ qz, du+ 

&f/2) e s 
qTPr,+dy+ 

W dy 
0 

Ybz 

+ (Pr, - l)$dy+. 
s 

(17) 

t?+ 

Assuming f is known, e+ may be calculated, 
and u: is given by equation (4b). The rough 
surface Stanton number could be camputed if 
the other variables in equation (17) were known. 
This is precisely where fundamental knowledge 
of flow over rough surfaces is lacking. Even the 
detailed work of Nikuradse cannot be utilized 
to determine the velocity distribution in the 
roughness region y < e. However, if the inte- 
grands in equation (17) can be defined as 
functions of known variables, the equation will 
define the parameters necessary to correlate the 
rough surface heat transfer data. The variable 
yz is not a constant, as for a smooth surface. 
By law of the wall similarity, yl is a function of 
e+, and the variables z/z0 and u+ are implicitly 
defined for geometrically similar roughness. 
Assuming that the effect of Re on Pr, is negligible, 
Pr, is a function of Pr for geometrically similar 
roughnesses. 

Dipprey and Sabersky proposed that law of 
the wall similarity also applies to the tempera- 
ture distribution in rough tubes, thus implicitly 
defining the variable a/a.... Because eauation 
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(17) requires evaluation of q/q,,, only over the 
very small interval, 0 < y < e, one may just 
as well propose q/q, 2: 1, or alternatively 
q/q, = (1 - y/R), which is usually assumed for 
flow in smooth tubes. In either case, no new 
functional arguments are specified. By this 
reasoning, equation (17) is written in the 
functional form 

(fi2St - l)iJ(f;2) + r4,’ = $s(e+, Pr) 

+ 4(Je+, Pr) - g(e+, Pr). (18) 

If the Prandtl number dependency of equation 
(18) can be separated, 

(f/2St - 1)/,/u/2) + UT = &ef) F(h). (18a) 

Equation (18a) defines the correlating para- 
meters for any geometrically similar roughness 
whose characteristic roughness dimension is 
e/D. Repeated-rib roughness is geometrically 
similar if p/e = constant. To account for 
variation of p/e with the repeated-rib roughness, 
equation (18a) is modified to 

(fi2Sr - l)iJW) + 4 = ij(e+,p/e)F(Pr). (18b) 

EXPERIMENTAL PROGRAM 

Experimental data were taken with circular 
tubes having repeated-rib roughness to test the 
correlating equations over a wide range of 
roughness dimensions, Reynolds number and 
Prandtl number. Five rough tube and one 
smooth tube sections were constructed. Table 
4 gives the dimensionless roughness parameters 

Table 4. Test section description 

Tube e/D p:’ 

01) 10 0.01 10 
02ilO 0.02 10 
04jlO 0.04 10 
02;20 0.02 20 
02/40 0.02 40 

and defines a reference code for each of the 
rough tubes. 

The first three test sections have geometrically 
similar roughness (defined within the concept 

of law of the wall similarity), and the second 
plus the last two were constructed to determine 
the effect of p/e. Data were taken on each test 
section at three Prandtl numbers (0.71, 5.10 and 
21.7) with 6000 < Re < 100000. The Prandtl 
number range was obtained using three fluids: 
air, water and n-butyl alcohol. Several of the 
tubes were also tested with butyl alcohol at 
Pr = 37.6 for which the maximum Reynolds 
number was limited to 42000. 

Each rough tube test section consisted of two 
identical copper tubes having D = 36.83 mm 
(1.45 in.) by 152.4 cm (60 in.) long. The first 
tube served as an unheated hydraulic entry 
section, and the second was electrically heated 
and used for heat transfer measurements. The 
repeated-rib test sections were fabricated by 
first machining a number of pipe segments of 
length p, each having a transverse rib, 0.38 mm 
(0.015 in.) thick and height e. The tolerance on 
all machined dimensions was within 0.040 mm. 
The segments were stacked and brazed to form 
the full length test sections. The brazing alloy 
was prevented from flowing on the inner tube 
surface. The brazed pipes were installed in a 
lathe and turned down to 41.28 mm (l-625 in.) 
o.d..and then cleaned. Two sets of live thermo- 
couples, circumferentially separated 180”, were 
installed in 0.30 mm square grooves machined 
in the tube outer circumference. Nichrome 
ribbon, 31.8 mm x 0.081 mm, was wrapped in 
a helix on the heat-transfer tube. The Nichrome 
ribbon was electrically insulated by 0.10 mm 
thick adhesive backed Teflon tape, cemented to 
the heating ribbon. 

For operation with liquids, a pump supplied 
liquid to a water-cooled heat exchanger. The 
liquid then flowed thru the test section and back 
to the pump suction which was maintained at 
1.7 bars (25 psig). Operation with air flow was 
accomplished by introducing compressed air 
through a pressure regulator into the orifice 
section and subsequently exhausting it into the 
atmosphere downstream from the test section. 
Test section heat input was provided by auto- 
transformer controlled power supplies and 
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measured by precision wattmeters. All wetted local variation of the inner wall temperature. 
surfaces were made from copper or stainless steel The degree to which the copper test section 
to rnin~i~ corrosion and fouling. achieved this condition was determined by 

Figure 4 shows the measuring section, numerical solution of the heat conduction 
consisting of a smooth entry section, the rough equation using an approximation of the expected 
hydraulic entry and heat transfer test sections local heat-transfer coefficient distribution. The 

(75in.l 

RT - Resistance thermometer AP -pressure drop 

T - Thermocouple Y -Test section voltage 

FIG. 4. Sketch of instrumented measuring section. 

and a mixing section. The entire measuring 
section was thermally insulated by a surrounding 
duct filled with Silica Aerogel. Nylon bushings, 
19 mm (075 in.) thick, bored to the base 
diameter of the pipe, were precisely installed 
between mating test section flanges. The test 
section pressure drop was measured between 
pressure taps drilled in the Nylon bushings. 
The measuring section inlet and exit fluid 
tem~rat~es were measured by resistance 
thermometers, and the test section pressure drop 
with U-tube or travelling well micromano- 
meters. The wall thermocouple millivolt output 
was read on a precision potentiometer. A more 
complete description of the apparatus is given 
by Webb [27]. 

The local heat-transfer coefficient varies about 
35 per cent from its peak value at the re- 
attachment point to the rib location [ 141, By 
using a thick walled, high conductivity tube, a 
constant heat flux applied to the tube external 
surface will very nearly redistribute within the 
tube wall, matching the local heat-transfer 
coefficient distribution, resulting in a negligible 

calculated local temperature difference (between 
the outer wall and the fluid temperature) 
differed about 1 per cent along the distance 
between ribs. 

The friction factors were determined with air 
as the working fluid and without heat input. 
They are based on the pressure drop over a 
152.4 cm tube length, preceded by a 91 cm 
smooth and a 152.4 cm rough development 
len~h.~e m~ured press~e loss was corrected 
to account for the length of the smooth Nylon 
bushings ; the maximum correction applied was 
only one per cent. The Prandtl number variation, 
based on the average fluid temperature, was 
held within Ifr@40 per cent. In order to minimize 
the effect of fluid property variation in the wall 
region, the test section power input was selected 
to give Pr/Pr, N 1.1 in the liquid tests. Two 
additional, higher heat flux runs were taken 
with the butyl alcohoi at Re N 3OooO to 
determine the degree to which the heat-transfer 
coefficients differed from the constant property 
fluid condition. The property ratio exponent, 
based on the Prandtl number, was found to be 

G 
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larger than observed for smooth tubes, O-25 vs. 
0.15. The rough tube liquid flow heat-transfer 
data were not corrected to the constant property 
condition, since the correction would reduce 
the Stanton numbers only 2-3 per cent. The 
heat-transfer coefficient of the rough tubes is 
defined in terms of the base area of the 36.83 mm 
i.d. tube and does not include the surface area 
increase due to the ribs. 

RESULTS AND DISCUSSION 

Figure 5 shows the results for the smooth 
tube. The friction factor agrees well with 
equation (4a), shown on Fig. 5. The smooth 
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iy‘ 
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c 0004 
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FIG. 5. Smooth tube heat transfer and friction data. 

tube Stanton numbers are corrected to the 

The rough tube data are shown in Figs. 6 and 

constant property condition, multiplying St, 
by the factor (Pr/Pr,,,)-“‘ll as recommended by 
Hufschmidt et al. [28] ; the correction amounted 
to less than 2 per cent. The solid lines on Fig. 5 
are the constant property Stanton number 
predictions of the Sparrow et al. analytical 
solution [26]. The experimental data agree well 
with the analytical solution for Re > 10000. 

\ 
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0008 
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0.001 

Interpolated fm Fig 10 

o~oo06 8 
FIG. 6. 
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Repeated-rib heat transfer and friction data for 
geometrically similar roughness (p/e = 10). 
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FIG. 7. Repeated-rib heat transfer and friction data for 
non-geometrically similar roughness, e/D = 0.02. 7. Figure 6 shows the data for the geometrically 
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similar roughness (p/e = lo), and Fig. 7 shows 
the effect of varying p/e, with e/D = 0.02. In the 
“fully rough” condition, the friction factors 
supposedly attain a constant value, independent 
of Reynolds number. These data show a small 
positive slope for Re > 100000. Tbis may be 
attributed to the very small scale roughness left 
by the lathe cutting tool ; this roughness was 
judged to have e/D N 3 x 10e5. The Stanton 
number data, except for the roughest tube 
(04/10), either show or suggest a maximum 
Stanton number. The Reynolds number at 
which this maximum occurs decreases slightly 
as the Prandtl number is increased. The maxi- 
mum Stanton number for Pr = 0.71 appears to 
be attained just before the fully rough condition 
is reached. 

Correlation ofj%ction data 
Correlation of the rough tube friction data is 

shown on Fig. 8. The data for the non- 
geometrically similar roughnesses are displaced, 

4 6610 20 40 60 100 200 4cm loo0 

e*=wub?eJi7T 

FIG. 8. Friction correlating parameter u: vs. e + . 
as expected, due to their different values of p/e. 
The proposed e/D independence for geometri- 
cally similar roughness is evaluated by 
comparing the data for tubes Ol/lO, 02/10 and 
04/10. The correlation for 02/10 and 04,/10 is 
excellent; however, the a,’ for OljIO is about 
12 per cent greater. The OljlO friction factor is 
about 7 per cent smaller than would be predicted 
from the value of u: for tubes 02/10 and 04/10. 
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The dependence of u,’ on p/e was determined 
by cross-plotting u: vs. e+ on logarithmic 
coordinates, and the results are shown on Fig. 9. 
The simple dependence, (p/e)-*‘” ‘, correlates 
the data for ef > 35, and in the fully rough 
region rod = 0.95 (p/e)“‘53. 

4 6 610 20 40 60 loo 200 4C0 600 I 

e'=WDh?eJn- 

m 

FIG. 9. Final friction correlation for repeated-rib tubes. 

There are several possible explanations for 
the slightly larger than anticipated values of 
u,’ for the Ol/lO tube, relative to that for tubes 
02/10 and 04/10. The three tubes have the same 
rib thickness so their roughnesses are not 
precisely geometrically similar. Geometric 
roughness similarity also requires that all radii, 
fillets, etc., be shrunk in the same proportion ; 
this condition was not met in the machining 
operation. A more probable possibility involves 
the definition of an equivalent diameter. The 
base surface is seldom taken as the origin for the 
velocity distribution measurements with rough 
surfaces. For example, Betterman [29] set the 
origin at y = @6e-O*8e above the base surface 
in his velocity measurements with rough 
surfaces ; this yielded a linear velocity distribu- 
tion on logarithmic coordinates. The scatter of 
the correlated friction data (corresponding to 
Fig. 9) is reduced to about +6*0 per cent using 
f and Re defined by the equivalent diameter 
De, s D - e. 

Correlation of the heat-transfer data 
The heat-transfer data correlated in the 
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functional form of equation (18b) are shown on 
Fig. 10 for each of the four Prandtl numbers. No 
significant dependence of g on p/e is observed 

b 02/10 
D 04/10 
0 02/20 
0 02/40 

/ 2 4 6 8 IO 20 ‘lo 60 100 2cxl 400 1000 

FIG. 10. Heat-transfer correlations, g(e+, p/e, Pr) vs. e+ for 
four Prandtl numbers. 

except possibly for Pr > 21.7 with e+ < 35. In 
this region the data for p/e = 40 are about 15 
per cent above the other data. Figure 10 
indicates that g attains a minimum value at 
e+ N 12 for Pr 3 5-l ; however, a minimum is 
not obvious for Pr = 0.71. 

A cross-plot of g vs. Pr gives g cc Pr”‘57. The 
final heat transfer correlation is shown on Fig. 11 

G 4 -- 5, D a 0 b _ 
--2,., . . . . 
-_- 376 . I : 

2 
I 2 4 6 810 20 40 60 100 200 400 loo0 

e’=le/DRe~ 

FIG. 11. Final beat transfer correlation, a(e+) vs. e+ including 
the Prandtl number dependency. 

as d(e+) vs. e+. The small effect of p/e on the 
heat-transfer correlation is not considered signi- 
ficant for engineering purposes and is not 
included as an argument of the function ii. The 

Prandtl number function for repeated-rib rough- 
ness [c.f. equation (18b)] is F(Pr) = Pr-“‘57, 
which is different from F(Pr) = Pr-“‘44 found 
by Dipprey and Sabersky for sand-grain 
roughness. 

The heat transfer and friction characteristics 
are expected to approach a hydraulically smooth 
condition at some small value of e+. The 
dashed lines near the left-hand side of Fig. 11 
show the curves of 

[Cf,/2St, - l)/J(f,/2) + a,‘] Pr-0’57 

predicted for hydraulically smooth tubes ; 
(f,;2St, - l)idcf,i2) is given by equation (14) 
and u,’ = 2.5 In e+ + 5.5 is obtained using the 
friction factor from equation (4a) in equation 
(4b). The relative separation of these dashed 
lines indicates a Prandtl number dependency 
different from g cc Pro.57 as the hydraulically 
smooth condition is approached. 

An equation for the Stanton number is 
formulated from equation (18a) with 
F(Pr) = Pr-“” 

f/9 
‘r = 1 + J(fi2) [g(e+) Pro’57 - &+(e+,pje)l 

. (19) 

The correlations for u:(e+, p/e) (Fig 9) and 
a(e+) (Fig. 11) are used to compute the friction 
factor and Stanton number. The following 
procedure outlines the method for calculation 
offand St : 

1. 

2. 

3. 
4. 
5. 
6. 

Specify the roughness geometry (e/D, p/e), the 
fluid (Pr) and assume a value of e+. 
Read e/e)-“.‘“uT(e+, pie) from Fig. 9 and 
calculate u,‘(e +, p/e). 
Calculateffrom equation (4b). 
Read g(e’) from Fig. (11). 
Compute St using equation (19). 
Compute Re = e+,/j2/f)/(e/D). 

The calculation method requires e+ as the 
independent flow variable rather than Re. 
However, using the above procedure it is easy to 
compute the St, f and Re corresponding to 
several values of e” and then to draw a EraDh of 
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St andfvs. Re. In the fully rough region (e+ > 35) repeated-rib air data for 10 < pie < 15 were 
the Stanton number and friction factor for correlated within f 5 per cent. 
10 c P/e < 40 can be represented by equations Figure 13 shows the data for Pr = 0.71 and 
(20) and (21)t. 21.7 correlated in the form q vs. e; as proposed 

St = 
Jj’2 

1 + Jvj’2) [4.5 (e+)“‘s Pro.57 - 0.95 (p/e)0’53] 

,/(2if) = 2.5 In (D/2e) - 3.75 + 0.95 (p/e)0’53. (21) 

Similar, but more complex, equations may be 
written for St and fin the region 6 < e+ < 35. 
The g(e’) may be represented by a polynomial 
in e+, but u,’ does not show a simple P/e 
dependency. 

Comparison with other correlating methods 
Additional confirmation of the heat- 

momentum analogy correlation is provided by 
comparing it with other methods frequently 
found in the literature. Figure 12 shows the 
present results for air plotted in the form 
St/St, vs. e+. This correlation is not very good, 
although the data for the geometrically similar 
roughnesses are correlated within f 11 per cent. 
These results are poorer than found by Sheriff 
and Gumley [21] and Sutherland [22], whose 

by Burck [ 111. With the exception of the 
roughest tube (04/10), the air data are well 
correlated by this method. However. the cor- 

30, ,I, I 
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FIG. 12. StjSt, vs. e+ for Pi- = 0.71. 

Pr=21.7 PI =O.il Tube 
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. 0 02/20 - 

IO 1000 3000 

e&l 

FIG. 13. r~ vs. e: for Pr = 0.71 and 21.7 and comparison with 
Burck’s [8] correlation. 

t The constant 4.5 in equation (20) differs slightly from relation for the Pr = 21.7 data is noticeably 
that given in [271, which used 4.75. poorer. The solid lines show the empirical 
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function q(e&, Pr) proposed by Burck, which 
apparently fails for eS$ > 1000. Burck shows a 
substantially larger effect of Prandtl number on 
r) than found in this study. 

Edwards [30] correlated his repeated-rib air 
data with the heat-momentum analogy method, 
but heused u,’ (e,‘,)ande&ratherthanu:(e+‘pje) 

FIG. 14. Heat-momentum analogy correlation using equiva- 
lent sand-grain roughness. 

and e+. Figure 14 shows the data of the present 
study correlated in the form used by Edwards. 
The Pr = 0.71 data are correlated about as well 
as on Fig. 10 except that the data for tube 02/40 
show a measurable deviation at the highest es&; 
the deviation is even more pronounced at the 
higher Prandtl number. The reason for the 
poorer correlation is easily explained. Transla- 
tion of the correlation from the e+ plane to the 
e& plane shifts the data relatively by e&/e+ 
along the abscissa and by pl(e&) - u:(e+,p/e)] 
along the ordinate. The vertical shift is nearly 

insignificant at the higher Prandtl numbers, 
especially for P/e = 40. Values of esgje for the 
fully rough condition are tabulated on Fig. 14 
and show that the geometrically similar rough- 
ness data have received about the same shift. 
However, the data for tubes 02/20 and 02/40 
have been shifted only 60 per cent and 25 per 
cent as much, respectively. Therefore, only 
geometrically similar roughness data will be 
correlated equally well by both methods. A 
correlation based on g(e&) would have a 
different exponent on the Prandtl number 
function than the &e+) correlation of Fig. 11. 

The effect of Prandtl number 
Perhaps the least understood aspect of rough 

surfaces is the influence of the Prandtl number. 
The Prandtl number influence may be evaluated 
by examining the behavior of the variable 
rl 3 (St$t,)/(fif,). If the effect of Prandtl number 
on the Stanton were the same for rough and 
smooth tubes, r~ (or St/St,) would be independent 
of Prandtl number. This q parameter may also 
be described as an “efficiency index”, since it 
defines the relative friction expenditure (flf,) 
necessary to yield a given heat transfer aug- 
mentation (St/&) for equal Reynolds number. 
An equation for q results by substituting 
equations (15) and (19) in the equation which 
defines q. 

1 + 9*3Jcfs/2) (Pr - 1) Pr-* 

’ = 1 + JcfI2) (gPr0’57 - 14,‘) ’ (22) 

Using equation (4b) for J(2if) and the Blasius 
friction factor for J(f,/2), which is defined in 
terms of e+, equation (22) becomes 

l 
9.3J(a/2) (Pr - 1) PC* 

It 

v=- 
{e+[u,f(e+, pie) - 3.75 - 2.5 In (2e/D)]}b’2 

1+ 
&e+) Pro’57 - 4(e+, p/e) 

uT(e+, pie) - 3.75 - 2.5 In (2elD) 

(23) 
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where the constants a and b apply to the 
Blasius friction factor (a = O-079, b = 0.25 for 
Re < 50000 and a = 0.046, b = 0.20 for 
Re > 50000). 

Equation (23) has the functional form 
q = q(e+, p/e, e/D, Pr), which is graphically 
portrayed on Fig. 15 for p/e = 10. The lower 
portion of Fig. 15 shows the influence of Pr on q 
for e/D = 001. The Prandtl number dependency 
of rough tubes is about equal to that of smooth 
tubes for e+ > 250. However, for e+ < 250 the 
rough tube Prandtl number dependency differs 
substantially from that of smooth tubes. The 
upper portion of Fig. 15 shows the degree to 
which 7 is also influenced by e/D. 

The results shown in Fig. 15 differ from the 
conclusions of Kalinin [7] and Burck [ll]. 

,,,I0 

02- p/e= 10 

0 ““” 
IO too 1000 

e* 

FIG. 15. The influence of Pr and e/D on q vs. et, for p/e = 10, 
calculated from equation (23). 

Kalinin found that q is essentially independent 
of Prandtl number, which agrees with this work 
only for e+ > 250. Burck argues that all 
roughness geometries have the same curves of 
q(e& Pr) and concludes a negligible dependency 
of rl on e/D. Except for the e/D dependency, 
Burck’s conclusions are in qualitative agreement 
with this work only for ef < 250 (or e& < 1000). 

A comparison of this data with other existing 
repeated-rib data, as well as other roughness 
types, will be presented in a future publication. 
A quantitative criterion for selection of the e/D, 
which yields a high value of q and St/St, at any 
arbitrary Reynolds number, will also be given 
in this paper. 

1. 

2. 

3. 

4. 

5. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

CONCLUSIONS 

Repeated-rib friction data are well correlated 
(Fig. 9) using law of the wall similarity with a 
logarithmic velocity distribution. 
The heat-momentum transfer analogy, based 
on law of the wall similarity, adequately 
correlates the repeated-rib heat transfer data 
over a wide range of e/D, p/e and Pr (Fig. 11). 
This correlation is found to be superior to 
other methods, especially in accounting for 
the effect of Prandtl number. 
The heat transfer and friction correlations 
may be extended to a wider range of e/D by 
virtue of law of the wall similarity. The 
correlations specifically apply to ribs of 
rectangular cross-section, whose thickness is 
small relative to the rib spacing. 
This work and the prior studies of Nikuradse, 
and Dipprey and Sabersky offer strong 
arguments for application of law of the wall 
similarity and heat-momentum analogy cor- 
relating methods to geometrically similar 
forms of arbitrary roughness. 
The results of this study argue against a 
single correlation for all roughness geometries, 
as proposed by Burck. 
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TRANSFERT THERMIQUE ET FROTTEMENT DANS DES TUBES A RUGOSITE 
ANNULAIRE REPETEE 

R&nnn%On dtveloppe des correlations de transfert thermique et de frottement pour un ecoulement 
turbulent dans des tubes ayant une rugosim annulaire rep&e. La correlation de frottement est basC sur 
la loi de similitude de la paroi qui est la meme mtthode qu’utilise Nikuradse pour la rugosite des grains de 
sable. La correlation de transfert thermique applique a un Ccoulement sur une surface rugueuse l’analogie 
de transfert chaleur-quantite de mouvement qui a d’abord Cte utili& par Dipprey et Sabersky pour la 
rugositi? de grains de sable. Les correlations sont veritiees A I’aide des rtsultats exp&imentaux relatifs a 
0,Ol i e/D < 0,04 et 10 < p/e < 40 et couvrant le domaine 0,71 i Pr < 37,6. Les correlations peuvent 
&tre &endues a un domaine plus large du rapport e/D en vertu de la loi de la paroi. Les bons rtsultats 
obtenus dans cette etude, renforces par I’ttude anttrieure de la rugosite des grains de sable, offrent un 
argument important pour l’application de mtthodes corrtlatives a d’autres geometries de rugositt. Le 
succb de l’analogie chaleur-quantite de mouvement est compare a d’autres methodes frtquemment 

trouvees dans la litterature. 
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WARMEUBERGANG UND REIBUNG IN ROHREN MIT RIPPENFORMIGEN 
RAUHIGKEITEN 

Zusammenfassurtg-Ftir turbulente Stromung in Rohren mit rippenformigen Rauhigkeiten wnrden 
Beziehungen fur den Warmetibergang und die Reibung aufgestellt Die Reibungsbeziehung ist aufgebaut 
auf dem Wandiihnlichkeitsgesetz nach derselben Methode, die Nikuradse fbr Sandkomrauhigkeit ver- 
wendete. Die W%rmetibergangsbeziehung basiert auf der Anwendung einer W&me- Impulsiibertragungs- 
analogie fiir die Stromung tiber rauhe Oberllbhen, die zuerst von Dipprey und Sabersky ftlr Sandkom- 
rauhigkeit benutzt wurde. Die Beziehungen wurden verwirklicht mit Versuchsergebnissen ftlr 0,Ol < 
e/D < 0,04 und 10 < p/e < 40 im Bereich 0,71 < Pr < 27,6. Die Beziehungen kiinnen dank des Wand- 
gesetzes such auf einen grosseren Bereich von e/D angewandt werden. Die guten Ergebnisse in dieser 
A&it, die such durch frtihere Arbeiten tiber Sandkornrauhigkeit unterstiitzt werden, sprechen stark 
ftir Anwendung der Korrelationsmethoden auf andere Rauhigkeitsgeometrien. Die Analogiebeziehung 
zwischen W&me- und Impulsiitxrtragung wird mit anderen Methoden verglichen, die sich hlufig in der 

Literatur finden. 

TEIIJIOOBMEH I4 TPEHHE B TPYBAX C PABHOMEPHOH 
IIIEPOXOBATOCTbIO 

hiHOT&lq5UI-Pa3pa60TaHbI obobrqaamae COOTHOLLleHMfl n0 TenJIOO6MeHy M TpeHWO JJJIH 

Typ6yJIeHTHOrO nOTOKa B Tpy6ax C paBHOMepHOti IIIepOXOBaTOCTbIO. B OCHOBy COOTHOIIIeHHH 

nOTpeHMlOJIBr 3aKOH nono6nn CTeHOK ~M~TOA,HC~OJI~~OB~HH~I~ HnKypa~3e~nRmepOXOBa- 

TOCTM neCKa. COOTHOIlIeHPIe n0 TennOO6MeHy OCHOBaHO Ha npllMeHeHMH aHaJIGrMI1 IEpeHOCa 

TenJIa I4 KOJIWIeCTBa ABIJWeHIJH K nOTOKy Ha LIIepOXOBaTOti nOBepXHOCTM, BnepBbIe npItMe- 

HeHHOti &innpeeM I4 Ca6epCKclM &'IR UIepOXOBaTOCTM neCKa.COOTHOlLIeHHH nOATBep)KAaIOTCFI 

3KCnepRMeHTaJIbHbIMH AaHHbIMII, 3:mTbIMu Am 0,Ol < e/D c 0,04 H 10 < p/e < 40 B 

AManaaoKe 0,71 < Pr < 37,6. Enarosapn 3aKOHy CTellKIi o606qaIoqne COOTHOLWHMR 

MoryT 6bITb paCIIIPipeHb1 20 6OJIee UIHpOKOrO ;IH3na3OHa e/D. ~O~OILI"e pe3yJIbTaTb1, 

nonyqetnme npH 3TOM MCCJIe~OBaHMM II nozrcpen.rlesHbIe npeabIAywei pa6oToi2 no 

LUepOXOBaTOCTH neCKa, CBIIAeTeJIbCTByIOT B nOJIb3y npclMeHeHllR KOppeJIRIJROHHbIX MeTOAOB 

KApyIWM ILtepOXOBaTbIM reOMeTpllHM.Pe3yJIbTaTABHOCTb KOppeJIFluIlkInOaHaJIOrHllnepeHOCa 

TenJIaM KOJILlqeCTBa ,I(BMWeHIN CpaBKEiBaeTCR C fipyrllMI4 MeTO~aMLf,qaCTO BCTpt'VaIOIQIIMACH 

B .mTepaType. 


